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Abstract. We study the boundary effects in invasion percolation (IP) with and without trapping.
We find that the presence of boundaries introduces a new set of surface critical exponents, as in
the case of standard percolation. Numerical simulations show a fractal dimension, for the region
of the percolating cluster near the boundary, remarkably different from the bulk one. In fact, on
the surface we find a value ofDsur = 1.65± 0.02 (for IP with trappingDsur

tr = 1.59± 0.03),
compared with the bulk value ofDbul = 1.88±0.02 (Dbul

tr = 1.85±0.02). We find a logarithmic
crossover from surface to bulk fractal properties, as one would expect from the finite-size theory
of critical systems. The distribution of the quenched variables on the growing interface near
the boundary self-organizes into an asymptotic shape characterized by a discontinuity at a value
xc = 0.5, which coincides with the bulk critical threshold. The exponentτ sur of the boundary
avalanche distribution for IP without trapping isτ sur = 1.56± 0.05; this value is very near
to the bulk one. Then we conclude that only the geometrical properties (fractal dimension) of
the model are affected by the presence of a boundary, while other statistical and dynamical
properties are unchanged. Furthermore, we are able to present a theoretical computation of the
relevant critical exponents near the boundary. This analysis combines two recently introduced
theoretical tools, the fixed scale transformation and the run time statistics, which are particularly
suited for the study of irreversible self-organized growth models with quenched disorder. Our
theoretical results are in rather good agreement with numerical data.

1. Introduction

Recently, a large effort has been devoted to the study of invasion percolation (IP) [1–3].
Compared with standard percolation [4], IP has the advantage of describing the dynamical
evolution of the invading cluster as well as the final result. Furthermore, since a connectivity
condition is naturally implemented in IP, its dynamics do not produce extra, undesired,
finite clusters, as happens in standard percolation [4]. Even if IP is more difficult to
treat theoretically (because it presents a non-local, extremal deterministic dynamics in a
quenched disordered medium [2, 5]), it has been considered the paradigm of a large class
of self-organized critical models. The Bak and Sneppen model for punctuated equilibrium
[6], and the Sneppen model for surface dynamics [7] belong to this class.

¶ E-mail: cafiero@mpipks-dresden.mpg.de

0305-4470/98/377429+18$19.50c© 1998 IOP Publishing Ltd 7429



7430 A Gabrielli et al

In the standard theory of critical phenomena, the role of boundaries has been intensively
analysed [8], and for many physical situations, ranging from Ising models to the more recent
class of self-organized models [9, 10], their presence produces a novel set of critical indices
related to the surface. The reason for the new behaviour is the lack of a microscopic layer
in the system. This changes dramatically the microscopic interactions in the surface region
of the system, yielding eventually a macroscopically observable characteristic behaviour.
The standard theory of finite-size scaling of a thermodynamical system close to its critical
point predicts in two dimensions [11] a logarithmic crossover of the critical exponents from
the boundary to the bulk. Consequently, the effect of the boundary extends over the whole
system. This is due to the strong correlations peculiar to a critical system. Such a study
has already been done for standard percolation, and the results are available in the literature
[12, 13], but no similar analysis has been performed for IP. Among the approaches applied to
models with extremal dynamics, going from mean-field treatment [5] to a recently introduced
technique called run time statistics (RST) [2, 14], only the latter one, when combined with
the fixed scale transformation (FST) method [15], seems able to capture the subtle effects
due to the presence of a boundary in the system.

In this work we present numerical and theoretical evidence that a peculiar behaviour on
the boundary takes place also in IP. Some of the results reported have already been published
[16]. Here, we would like to give a complete and detailed description of numerical results
and of the derivation of the analytical results of our previous paper [16]. Moreover, we
present new analytical and numerical results, like the computation of the boundary avalanche
exponent and the extension of our analysis to the case of IP with trapping, which has no
analogue in the standard percolation model. In particular, the results for IP with trapping
have no counterpart in standard percolation theory [4].

From a qualitative point of view, the analogy between boundary effects in ordinary
critical phenomena and IP can be easily understood by considering that boundary sites have
fewer neighbours than bulk ones and hence fewer chances to invade a new region. Moreover,
IP is a self-organized critical model and, as the evolution time tends to infinity, it can be
considered in the same way as an ordinary thermodynamical system when the temperature
is tuned at the critical valueTc. The crossover between boundary and bulk fractal properties
is shown by considering intersections of the percolation cluster with straight lines parallel
to the external boundary. This subset of the percolating cluster has a fractal dimension that
varies with the distance from the boundary. Using some theoretical tools introduced for
the study of fractal growth processes, the RTS [2, 14] and the FST [15], we are able to
study analytically this behaviour, with an estimation of the boundary fractal dimension that
is in rather good agreement with the numerical value. This is done for IP with and without
trapping. In addition we study the avalanche dynamics near the boundary, for IP without
trapping, and we compute both numerically and analytically, by using the RTS and FST
schemes, the boundary avalanche exponentτ sur.

Our results are presented in the following order. In section 2, we present the definition
of the model and a review of the numerical data. In section 3, we describe the concepts
underlying RTS and FST. In section 4 we apply these methods to the computation of the
boundary fractal dimension. In section 5 we compute the boundary avalanche exponent.
In the last part we give a summary of the main topics. The appendix is devoted to the
derivation of the RTS equations.
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Figure 1. Set-up of numerical simulations. An invading (not yet percolating) cluster is shown.
Only the bottom-left part of the cluster will be considered for the statistics.

2. The invasion percolation model

IP was introduced more than 10 years ago [1] in order to describe the slow capillary
displacement of a fluid (e.g. oil), thedefender, from a random porous medium due to
another immiscible invading fluid (e.g. water), theinvader.

In general two cases are studied: (1) the medium is filled with an incompressible
defender (e.g. oil), which is immiscible with the invader fluid; (2) the medium is filled
with a defender with an infinite compressibility. In the former case the invader maytrap
regions of the defender: e.g. as the water advances, it can completely surround regions of
the oil. These regions become disconnected from the other bonds occupied by the defender
and, due to incompressibility, become forbidden to the invader. Thistrapping effect lowers
the fractal dimension of the percolating invader cluster. From an experimental point of
view, trapping is connected to the phenomenon of ‘residual oil’, which is a great economic
problem in the oil industry [17].

The random medium is represented by a network of bonds corresponding to the throats
connecting the pores of the medium. Let us assume, now, that the invader begins to
displace the defender. Under the condition of a low and constant flow rate, the interface
can be considered to move one step at time, by invading the throat with the smallest section,
i.e. the throat where there is the largest capillary force [1]. One can mimic this behaviour by
assigning a random sectionxi (here we take a uniform distribution in [0, 1]) to each bond
i of the medium. The invading cluster evolves by occupying the bond with the smallestxi
on its perimeter. This is what is called adeterministic extremal dynamics.

To study the behaviour at the boundary of this model, we performed some numerical
simulations in the system shown in figure 1, representing a sample of a two-dimensional
square lattice. To study the effect of only one boundary (e.g. the left one), we ensured
isolation from the other one. To obtain this, we choose a lattice with sizeHL× 2L where
H = 2, 3, 4, and the initial invader cluster is composed of the firstL bonds of the bottom
line, starting from the left boundary. The simulation stops when the cluster percolates the
system, i.e. when the growth reaches the top of the sample.

In figure 2 a typical realization of this process is shown. The region of interest is the
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Figure 2. This picture shows the entire cluster. The region of interest in which statistics is
taken is the lower-left one.

bottom-left one in figure 1, where we can assume that the region is ‘frozen’ with respect to
the invasion process, i.e. the asymptotic fractal properties of the percolating cluster are well
defined. For each value of the system sizeL we collected a set of 103 different realizations.
In the region where statistics is collected, we study the fractal dimension of the sets of
points obtained by intersecting the percolating cluster with lines parallel to the boundary,
at a distancez from it. In this way, we are able to follow the crossover of the fractal
dimension of the cluster from the boundary to the bulk region. A standard box-counting
procedure is used to compute the fractal dimension of the intersections. The behaviour of
the fractal dimensiond(z/L) of the intersections as a function of the normalized distance
z/L from the left boundary is presented in figure 3 forL = 256, H = 4 (i.e. 512× 1024).
In table 1 we present the values of the boundary fractal dimensiondsur for different system
sizesL and different values ofH . For the largest simulationL = 256, H = 4 (i.e.
512× 1024), we obtain the result that the fractal dimension of this subset of the cluster
passes fromdsur = 0.65± 0.02 on the boundary todbul = 0.88± 0.02 in the bulk (at a
distancez/L ∼ 0.4 from the boundary), wheredbul represents the fractal dimension of the
intersection far away from the boundary. A similar behaviour holds for smaller sizesL and
H as well. Since the dimension of the intersection setd obeysd = D − 1 whereD is
the fractal dimension of the cluster, the last result is in agreement with the known value of
D ' 1.89.

In order to explain such a slow crossover fromdsur to dbul we assumed that the number
of occupied sitesN(z, L) at a distancez from the boundary follows the finite-size scaling
law:

N(z, L) = Ldbul
f (z/L (1)

where one hasf (z/L) ∼ (z/L)(d
bul−dsur) for z � L and f (z/L) = constant forz � L.
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Figure 3. Behaviour of the fractal dimension of the intersection set of IP without trapping
versus the normalized distancez/L from the boundary (H = 4). z andL are in lattice units,
making the normalized distance dimensionless.

Table 1. Boundary fractal dimension of IP without trapping for different system sizesL and
different values ofH .

L = 64 L = 128 L = 192 L = 256

H = 2 0.66± 0.02 0.64± 0.02 0.63± 0.02 0.62± 0.02
H = 3 0.70± 0.02 0.66± 0.02 0.64± 0.02 0.63± 0.02
H = 4 0.73± 0.02 0.68± 0.02 0.66± 0.02 0.65± 0.02

Then in the first region we should have

d(z) = dsur+ (dbul− dsur) log(z)/ log(L). (2)

To test this scaling hypothesis we collapsed the curves relative to differentL by plotting
[d(z)− dsur] log(L) as a function ofz. The result depicted in figure 4 shows a rather good
collapse in the smallz region. A similar behaviour is found for IP with site trapping. In order
to implement site trapping in our simulations, after each growth step a fictitious Laplacian
field φ is relaxed on the growing structure, with the following boundary conditions:φ = 0
on the bottom boundary, the left boundary and the invading cluster, whileφ = 1 on the
top boundary. In this way, all the bonds in a closed, trapped region are characterized by
φ = 0. Then it is possible to recognize trapped bonds and to eliminate them from the list of
bonds allowed to grow at the next step. Obviously, in this case the numerical simulations
need much more time to be performed and we have been able to collect a smaller, but
still significant, statistics with respect to IP without trapping (103 clusters forL = 64,
2× 102 clusters forL = 128 and 102 clusters forL = 256 each one forH = 2, 3, 4). In
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Figure 4. Collapse plot of [d(z) − dsur] log(L) for the different sizes, inlog–linear scale, for
IP without trapping (H = 4). z andL are in lattice units, making the normalized distance is
dimensionless.

Table 2. Boundary fractal dimension of IP with trapping for different system sizesL and
different values ofH .

L = 64 L = 128 L = 256

H = 2 0.64± 0.03 0.59± 0.03 0.58± 0.03
H = 3 0.65± 0.03 0.62± 0.03 0.60± 0.03
H = 4 0.65± 0.03 0.62± 0.03 0.59± 0.03

figure 5 we show the behaviour of the intersection dimensiondtr(z/L) versus the normalized
distance from the boundary, each simulation is for a value ofH = 4. The fractal dimension
dtr is computed on samples 512× 1024 (i.e.L = 256 andH = 4) and passes from
dsur

tr = 0.59± 0.03 on the boundary todbul
tr = Dbul

tr − 1 = 0.85± 0.03 in the bulk, which
is in agreement with the known valueDf ∼ 1.82 for site trapping [1]. The data shown in
table 2 exhibit the same slow logarithmic crossover found for IP without trapping.

Other important quantities characterizing the dynamical properties of IP are the average
distribution of quenched variables on the perimeter, calledhistogram8t(x), which gives
evidence of the self-organized nature of the model, and the avalanche-size distribution in
the asymptotic critical stateQ(s; xc), wherexc is the ‘self-critical’ threshold of the model.

Let us start with the study of the histogram for IP without trapping. It is known [14]
that for the bulk IP, thehistogramdistribution evolves in time from the initial flat shape,
and self–organizes into a step function with a discontinuity at a critical valuexbul

c which
depends on the details of the model and on the embedding dimension [1] and coincides
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Figure 5. Behaviour of the fractal dimension of the intersection set of IP with trapping versus
the normalized distancez/L from the boundary (H = 4). z andL are in lattice units, making
the normalized distance dimensionless.

with the critical threshold of the classical percolation in the same kind of lattice. For the
two-dimensional square lattice one hasxbul

c = 1
2. Our simulations show that the distribution

of thexi ’s on the boundary self–organizes into a theta function and the critical threshold is
againxbul

c . A comparison between the bulk histogram and the boundary one is shown in
figure 6. It is not surprising to find a similar behaviour, because the value of the boundary
critical threshold is dependent on the dynamical evolution of the whole percolating cluster.
Since for bulk IP the trapping does not affect the histogram distribution [1], the introduction
of the trapping does not modify the above result.

Another important quantity describing the dynamics of the model is the critical
avalanche-size distributionQ(s; xc). An avalanche is a sequence of elementary growth
events causally and geometrically connected to a first one, which is called theinitiator
of the avalanche. That is, if one considers an event of growth of theinitiator (a certain
bondk), the avalanche lasts until the bonds selected to grow are those joining the growth
interface after the growth of bondk (bonds ‘younger’ thank). Note that all these bonds
have the related random numberx smaller than theinitiator one. If the bond selected by
the dynamics was on the perimeter before the initiator growth, then the avalanche stops.
In the asymptotic limit, due to the step shape of the histogram, only bonds withx 6 xc

grow. We callQ(s; x) the size distribution of avalanches whose initiator is associated with a
number equal tox. It is known for bulk IP, both from numerical simulations and theoretical
calculation, thatQ(s; x) is scale invariant (i.e. is a power law), only if the variablex of
the initiator is equal toxc. If x < xc, Q(s; x) has an exponential cut-off at a typical
size s0 ∼ (xc − x)−σ with σ > 0. The avalanche distributionQ(s; xc) for bulk IP without
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Figure 6. The histogram distribution of bulk perimeter variables in IP without trapping is
compared with the distribution of variables near the boundary of the system, after 5× 103 time
steps. The two distributions coincide.

trapping has a power law shape with an exponentτ bul ∼ 1.60±0.02 [2, 18]. The dynamical
activity near the boundary can be characterized by the distribution of the avalanches whose
first bond (initiator) is located on the boundary. We performed a set of about 103 numerical
simulations of IP without trapping, of size 3L × 5L with L = 128, lasting 4× 105 time
steps and collected the statistics of boundary avalanches from the last 2× 105 time steps,
in order to ensure that the system is in its asymptotic critical state. To identify the single
avalanche, we followed [2], by adding the condition that the initiator of the avalanche is on
the boundary. In figure 7 we show the behaviour of the boundary avalanche distribution.
We find: τ sur= 1.56±0.05. This value is very near to the bulk value, and we can conclude
from our numerical analysis that bulk and boundary avalanches have the same distribution.
In section 5 we will derive this result analytically.

3. Run time statistics and fixed scale transformation

In this section we introduce the theoretical tools we used to compute the boundary fractal
dimensiondsur of the infinite IP cluster and the boundary avalanche exponentτ sur. Our
strategy combines FST [15] and RTS [2, 14]. We describe briefly the FST approach and
we focus more on the RTS.

FST is a lattice path integral scheme allowing one to evaluate the spatial correlation
properties of the intersection between an infinite fractal cluster and a straight line. This
approach is based on the statistical invariance of the correlation properties under a parallel
translation of the intersecting line (valid for fractals which are homogeneous, at least in the
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Figure 7. Border avalanche distribution of IP without trapping inlog–log scale. The least-square
fit gives a slopeτ sur= 1.56± 0.05.

Figure 8. Fine graining transformation for occupied cells.

translation direction). In particular, it is possible to compute the probabilitiesC0,C1 and
C2 related to the configurations 0, 1, 2 of the fine graining process of figure 8. For the
normalization condition it follows

C0+ C1+ C2 = 1. (3)

From these probabilities one can compute the fractal dimension of the intersection by

d = log(C0+ C1+ 2C2)

log 2
= log(1+ C2)

log 2
. (4)

As usual, due to the intersection dimension rule, the fractal dimensionD of the analysed
cluster is given byD = 1+ d. The probabilitiesC0, C1 andC2 are computed through the
statistical weights of growth paths, once a stochastic dynamical formulation of the model
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is given. This means that the use of FST is straightforward whenever a simple calculation
of the growth paths on the lattice is possible. In the present case, there are two problems
to overcome in applying the FST.

First, the fractal properties of the system depend on the distance from the boundary
(C0 = C0(z), C1 = C1(z), C2 = C2(z)), so this extrapolation from the intersection
dimension to the global dimension is no longer allowed. Moreover, what we actually can
compute with the FST method are the local (near to the boundary) correlations orthogonal
to the boundary, while the fractal dimension of the intersection set parallel to the boundary
is given by the correlation properties parallel to the boundary. However, since the crossover
of the fractal dimension from the boundary to the bulk is very slow (logarithmic), one is
allowed to assume that the cluster is ‘locally’ isotropic. In this case transverse and horizontal
correlations in a thin (with respect to the system size) strip parallel to the boundary share
similar properties. For the same reason, we can evaluate the fractal dimensiond of the
intersection between the cluster and a straight line parallel to the lateral boundary, through
the first neighbours correlations orthogonal to the same boundary at the same distance.

Secondly, for IP (and for any other model with deterministic extremal dynamics) the
calculation of the growth paths is extremely difficult, because the weight of a path cannot
be written as the product of the probabilities of the single steps composing it. The extremal
dynamics of IP isdeterministic, and the disorder appears only as a realization of quenched
random variables. This implies that to evaluate the statistical weight of a given path we have
to perform an average over all the quenched disorder and this average does not factorize itself
in the product of the averages of the single steps composing the path. The latter problem
is solved by the introduction of the RTS transformation. This transformation allows us to
represent a quenched-extremal process like a stochastic dynamics.

As regards the RTS (for a more detailed discussion see [2]), the starting point is, at each
time stept , to consider an effective probability densityρi,t (x) for the random numberxi
associated to each bondi of the growing interface∂Ct . This density depends on the growth
history of the dynamics. In fact,ρi,t (x) dx gives the probability that the variablexi for the
bond i at time t is in the interval [x, x + dx], conditioned by the past growth dynamics
of the cluster. If a bondi does not belong to the cluster, or to the growth interface, its
effective probability density is the flat one. Meanwhile, the bonds on the growth interface
show a more interesting form of distribution. Once the densitiesρi,t (x) for each bondi on
the interface are known, one can calculate the growth probability distribution{µi,t } (i.e. the
probability of being the minimum on the interface) at that time step for each interface bond
(see the appendix):

µi,t =
∫ 1

0
dx ρi,t (x)

∏
j∈∂Ct−{i}

[ ∫ 1

x

dy ρj,t (y)

]
(5)

where ∂Ct − {i} represents the growth interface at timet except for the bondi. The
effective probability density of any surviving bondj at time t + 1 on the interface must
then be updated, conditioned to the previous growth history at timet , i.e. the growth of the
bond i. The corresponding equation is (see the appendix):

ρj,t+1(x) = ρj,t (x)

µi,t

∫ x

0
dy ρi,t (y)

∏
k∈∂Ct−{i,j}

[ ∫ 1

y

dz ρk,t (z)

]
(6)

where∂Ct−{i, j} is the growth interface except for bondsi andj . New bonds added to the
perimeter are assigned an effective probability density according to a uniform distribution
in [0, 1], as no information is available about them until this time step.
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Figure 9. The growth column used in the FST scheme. The heavy bond is the initiator of the
avalanche, withx = xc, and the broken bonds are the bonds of the perimeter after the initiator’s
growth.

The above formalism allows us to write the statistical weight of a path as the product
of the probabilities of individual steps.

4. Computation of the boundary fractal dimension

In order to combine the FST and the RTS approach, we need to have scale-invariant growth
rules (we want to compute a critical exponent, the fractal dimension, and the result cannot
depend on the scale). The extremal dynamics of IP is known to be independent of the
choice of the initial distribution of quenched variables. By using this symmetry, one can
show that the scale-invariant dynamics for block variables is identical to the microscopic
dynamics [2]. The FST performs the computation of the correlation properties of a given
structure by considering only the growth processes inside a growth column (figure 9). This
approximation has been shown to be a good one for the dielectric breakdown model [19], and
for bulk IP [2]. Since equations (5) and (6) involve all the variables on the perimeter of the
growing cluster, a limitation of the process in the growth column destroys these correlations,
leading to compact clusters [2]. The solution to this problem is given by observing that, as
the critical avalanche size distribution is a power law, the statistical properties of a generic
one (i.e. an avalanche whose initiatori has xi = xc) are then scale invariant. Then if
one considers the dynamical evolution of a generic critical avalanche inside the growth
column one obtains the scale-invariant correlation properties (i.e.C0, C1 andC2) needed
to compute the fractal dimension. This can be done by modifying equations (5) and (6) in
order to take account of the dynamical evolution of a single critical avalanche. We consider
a growth column on the perimeter of the infinite structure (t →∞). The starting point is
the observation that scale-invariant asymptotic avalanches begin with an initiator atx = xc,
due to the asymptotic shape of the histogram. All the memory of the past growth history
is then contained in the requirement that the initiator hasx = xc. Then one is allowed to
consider explicitly only the bonds grown after the growth of the initiator.

The RTS dynamics corresponding to the local scale-invariant dynamics, is obtained by
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Figure 10. A possible path of growth at the sixth order. The invasion proceeds along the
arrows, from one black point to another. The number near each arrow is the growth time.

• considering only bonds inside the growth column;
• imposing that any ‘active’ bondi in the column can grow only if the value of its

variablexi is less thanxc = 1
2. The idea is that ifxi > xc for all the bonds in the growth

column, growth will occur at some other place in the structure outside the growth column
(it coincides with the definition of scale-invariant avalanche);
• imposing that the initial bond (i.e. theinitiator), which is the largest of the variables

participating to the growth process, has exactlyxi = xc.
In this way we modified the equations (5) and (6), limiting the product over the perimeter

variables to variables inside the growth column.
Because of the presence of a lateral surface, this model is intrinsically anisotropic, and

consequently we have to introduce some modification to the usual way of performing the
FST for the bulk IP. The anisotropy of the environment implies a breaking of symmetry in
the FST basic configurations in figure 8. Then, due to the presence of the boundary, the
probabilitiesC0 andC1 are not equal in this case.

Through the FST one may compute directly the matrix elementsMij and from the
relation: (

C0

C1

C2

)(
M00 M10 M20

M01 M11 M21

M02 M12 M22

)(
C0

C1

C2

)
(7)

it is possible to evaluateC2 and, by using equation (4),d. In this case

M01 = M10 = 0 (8)

and

C2 = M12M02

M12+M21(M02−M12)+M12(M02−M22)
. (9)

The anisotropy of the environment is also introduced in the lateral boundary condition
of the growth column where the FST calculation is performed. At the left side of the column
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Figure 11. The power law fit we used to get the extrapolated value ofdsur for IP without
trapping.

Table 3. Values of the boundary fractal dimension with respect to the ordern of computation,
for IP without trapping.

n 2 3 4 5 6 7 . . . ∞
dsur(n) 0.453 0.576 0.632 0.657 0.671 0.679 . . . 0.702

we impose the presence of a rigid wall and at the right side the paths are allowed to go out
and then to return inside the growth column, as can be seen in figure 10. In this way we
have obtained the results shown in table 3, where the fractal dimension for increasing order
n (the path length) of the FST computation is given. We used a power law fit (figure 11)
to extrapolatedsur(n) to n = ∞ and obtaineddsur(∞) ' 0.70.

A similar approach has been applied to IP with site trapping, in particular: when a
growth path produces a closed region surrounding the initial pair configurationCi (see
figure 10), it stops and its statistical weight contributes to the matrix elementsMi,1, since
the empty right (or left) site above the initial configuration can no longer be occupied. The
results are shown in table 4 and in figure 12. We have extrapolated our results ton = ∞
by using the following function (see figure 12):

dsur
tr (n) =

1

n
exp(−nα) (10)

with α = 0.66. This extrapolation givesdsur
tr (∞) ' 0.66.
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Table 4. Values of the boundary fractal dimension of IP with site trapping with respect to the
ordern of computation.

n 2 3 4 5 6 7 . . . ∞
dsur

tr (n) 0.453 0.576 0.622 0.641 0.651 0.657 . . . 0.664

Figure 12. Extrapolation of the FST fractal dimensiondsur
tr for IP with site trapping.

5. Computation of the boundary avalanche exponent

We now propose a simple theoretical scheme for the analytical calculation of the boundary
avalanche exponentτ sur of IP without trapping, based on the RTS and the FST ideas, which
has been successfully applied to bulk IP [2].

The following functional form for the avalanche-size distribution is assumed:

Q(s; x) = s−τ sur
f (|x − xsur

c |sσ ) (11)

wherexsur
c = 1

2 is the critical threshold. The functionf (x) has the following properties:
limx→0 f (x) = α 6= 0, and for large values ofx one hasf (x) ∼ e−x . Since the sizes of
the avalanche also includes the initiator, the normalization condition for equation (11) is:

∞∑
s=1

Q(s; x) = 1 ∀x ∈ [0, 1]. (12)

Usually equation (11) holds fors � 1. However, if we consider the dynamics at a certain
scale`, we can use equation (11) to describe the statistics of avalanches at that scale. In
the limit t →∞, for x = xsur

c , the asymptotic behaviour described by equation (11) holds
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Figure 13. (a), (b): Boundary conditions for a boundary avalanche after the growth of the
initiator. (•) indicates the cluster sites and (◦) the perimeter ones; the filled segments are grown
bonds and the broken ones are the descendants of the initiator. The left boundary is shown. Its
effect is to reduce the maximum number of perimeter bonds in which the avalanche can go (2),
with respect to the bulk (3).

for smaller and smaller values ofs as` is increased. The deviations from the pure power
law behaviour are integrated out into the dynamics at scale`. For ` � 1 we are allowed
to suppose that equation (11) holds froms = 1 to s � 1. In this case the normalized form
of equation (11), forx = xsur

c is

Q(s; xsur
c ) = s−τ

sur∑∞
s=1 s

−τ sur . (13)

The denominator of equation (13) is theRiemann zeta function, ζ(τ sur).
From equation (13), valid if the initiator is atxc one has

Q(s = 1; xsur
c ) = 1∑∞

s=1 s
−τ sur =

1

ζ(τ sur)
. (14)

To obtain an analytic estimation of the boundary avalanche exponentτ sur one has to
evaluate the left-hand side by taking into account the boundary conditions near the avalanche,
together with the presence of the boundary. Then inverting equation (14) it is possible to
measureτ sur. Let us evaluateQ(s = 1; xsur

c ). The events = 1 means that after the growth
of the initiator with variablexsur

c the avalanche stops. Thus, we consider the initiatori that
grew at timet0 and we compute the probability that the avalanche stops at timet0 + 1.
This happens when all the descendant bonds of the initiator have variables larger thanxsur

c .
In fact, if at least one descendant ofi had variable lower thanxsur

c , the avalanche would
continue because this variable would be the minimum one on the whole perimeter. In order
to evaluate this probability we need to take into account the environment of the initiator.
In figure 13(a) and(b) we schematize all the possible boundary conditions for the initiator
bond. We consider only the nearest neighbours of the initiator because, asymptotically, the
avalanches on the perimeter are influenced only by the environment near the zone where
the avalanche evolves. That is, they are affected by other branches of the aggregate which
have some perimeter bonds affected by the avalanche. The presence of the boundary is
implemented by allowing only the right and the vertical bond to grow in figure 13.
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For these two cases we can evaluate the probability that the avalanche stops immediately
after the growth of the initiator, conditioned by the assigned boundary conditions. The exact
value of this probability is given by the average of the two cases. In order to calculate the
statistical weights of configurations(a) and (b) of figure 13 we use the void distribution
P(λ) of the random anisotropic Cantor set whose generators have local (near the boundary)
probabilitiesCi; i = 0, 1, 2 given by the FST calculations performed in the previous section.
We are then allowed to useP(λ) with the weights obtained by FST because for IP the
perimeter has the same statistical properties as the bulk of the structure. Obviously, the
void distribution we obtain is a local one, since the probabilitiesCi for the Cantor set
orthogonal to the boundary are dependent on the distance from it. In practice, only the
P(λ = 0) can be computed with a reasonable degree of accuracy, because it depends
only upon the local properties of the set. When the sizeλ of the void is not small with
respect to the system size, the implicit assumption that theCi are independent ofz becomes
inconsistent.

We report the expression ofP(λ = 0) from [15] in terms ofC2 andC1:

P(λ = 0) = C2

1− C1+ C1C2+ C2
1

. (15)

The weight of configuration(a) is

W(a) = 1− P(λ = 0). (16)

The weight of configuration(b) is

W(b) = P(λ = 0). (17)

The fixed point values ofC2 andC1 obtained from FST calculation ofdsur
FST in the previous

section areC2 ' 0.628 andC1 ' 0.249. If we introduce these values in equation (15) we
get: P(λ = 0) ' 0.648. The probabilityQ(s = 1; xc) to have an avalanche of duration
s = 1 is

Q(s = 1; xc) = (1− xc)
2(1− P(λ = 0))+ (1− xc)P (λ = 0) = 0.412. (18)

At this point, in order to findτ sur we should solve the equation

0.412= 1∑∞
s=1 s

−τ sur =
1

ζ(τ sur)
. (19)

The numerical solution of equation (19) gives

τ sur= 1.55 (20)

in very good agreement with our numerical findings. The above scheme is, however, too
simplified to account for trapping. In fact, the method is based on the first growth step
inside an avalanche, while trapping becomes relevant at higher orders (see table 3 and 4).

6. Conclusions

In this paper, we have presented, in line with usual critical phenomena, the study of boundary
effects in IP with and without trapping. Near a boundary one deals with a qualitatively
different rate of occupation. This is reflected in a lower fractal dimension of this part of
the cluster. Numerical simulations give surface fractal dimensionsdsur = 0.65± 0.02 and
dsur

tr = 0.59± 0.03 for IP without trapping and IP with site trapping respectively. These
two values are smaller than the bulk values. Meanwhile, simulations for the asymptotic
shape of the histogram distribution and for the boundary avalanche distribution for IP
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without trapping, show that the boundary does not affect these quantities. The histogram
self-organizes into a theta function with thresholdxsur

c = 1
2 and the boundary avalanche

distribution is characterized by an exponentτ sur= 1.56± 0.05, very near to the bulk value
τ bul = 1.60±0.02. We are also able to present a theoretical scheme to compute analytically
the relevant critical exponentsdsur (for both IP with and without trapping) andτ sur (for IP
without trapping only) near the boundary. Our theoretical resultsdsur ' 0.70, dsur

tr ' 0.66
andτ sur' 1.55 are in good agreement with the numerical data.

Appendix. Derivation of the RTS equations

In IP a bond grows at timet if its variable is the minimum one at that time. Then we can
write

Prob(t; (x 6 xi 6 x + dx)
⋂
(xi = min

k∈∂Ct
xk)) = dx ρi,t (x)

∏
k∈∂Ct−{i}

∫ 1

x

ρk,t (y) dy. (A1)

This gives the probability that, at timet , x 6 xi 6 x + dx and at the same timexi is
the minimum on∂Ct (i.e. that every other bond variable in∂Ct is betweenx and 1). By
integrating equation (A1) one can finally write the growth probabilityµi,t for the bondi at
time t [14, 2]:

µi,t ≡ Prob(t; xi = min
k∈∂Ct

xk) =
∫ 1

0
dx ρi,t (x)

∏
k∈∂Ct−{i}

∫ 1

x

ρk,t (y) dy. (A2)

To update the effective densitiesρj,t (x) of generic bond not grownj ∈ ∂Ct to obtain
ρj,t+1(x), we make use of the law of conditional probability:

Prob(A|B) = Prob(A
⋂
B)

Prob(B)
. (A3)

The eventsA andB are respectivelyA ≡ (x 6 xj 6 x + dx) andB ≡ (xi = mink∈∂Ct xk).
By definition of ‘effective probability density’, we can write

Prob(t + 1; x 6 xj 6 x + dx) = dx ρj,t+1(x). (A4)

However, using conditional probability, we can also write

Prob(t + 1; x 6 xj 6 x + dx) = Prob(t; (x 6 xj 6 x + dx)|(xi = min
k∈∂Ct

xk))

= Prob(t; (x 6 xj 6 x + dx)
⋂
(xi = mink∈∂Ct xk))

Prob(t; xi = mink∈∂Ct xk)
. (A5)

The numerator of (A5) can be written as

Prob(t; (x 6 xj 6 x + dx)
⋂
(xi = min

k∈∂Ct
xk))

= dx ρj,t (x)
∫ x

0
dy ρi,t (y)

∏
k∈∂Ct−{i,j}

(∫ 1

y

du ρk,t (u)

)
. (A6)

This gives the probability that, at timet , x 6 xj 6 x + dx, and at the same time
xi = mink∈∂Ct xk) (i.e. xi = y ∈ [0, x] and for all the otherk ∈ ∂Ct , xk > y. The
denominator of the right term in equation (A6) is simplyµi,t . Then we have

ρj,t+1(x) = ρj,t (x)

µi,t

∫ x

0
dy ρi,t (y)

∏
k∈∂Ct−{i,j}

[ ∫ 1

y

dz ρk,t (z)

]
.
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